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APPLICATION OF THE METHOD OF STEEPEST DESCENT TO LAMINATED SHIELD 

WEIGHT OPTIMIZATION WITH SEVERAL CONSTRAINTS - THEORY 

by Gerald P. Lahti 

Lewis Research Center 

SUMMARY 

The method of steepest descent used in optimizing one-dimensional layered radiation 
shields has been extended to multidimensional, multiconstraint situations. The multi- 
dimensional optimization algorithm and equations have been developed for the case of a 
dose constraint in any one direction being dependent only on the shield thicknesses in that 
direction and independent of shield thicknesses in other directions. Expressions are de- 
rived for one-, two-, and three-dimensional cases (one, two, and three constraints). 
The procedure is applicable to the oflimization of shields where there are different dose 
constraints and layering arrangements in the principal directions. 

INTRODUCTION 

One-dimensional shield weight optimization procedures are currently in use for the 
design of layered radiation shields (refs. 1 to 4). In general, though, shields such as for 
space power reactor applications may have different dose constraints in the several dif- 
ferent directions. This requires either the superposition of two (or more) separate one- 
dimensional optimizations or development of a procedure which optimizes in two or more 
directions simultaneously. The basis for a computer code to do the latter is developed 
in this report. Expressions for the general case of constraints being functions of all 
shield layer thicknesses are derived, but the complete algorithm for the optimization 
procedure is made in this report only for the case where the dose constraint in each 
principal direction is a function of thicknesses in that direction only. This has applica- 
tion to the optimization of shields where there are different dose constraints and layering 
arrangements in the different principal directions and there is a weak (or no) dependence 
of the dose in one direction on the thickness in another direction. 



The development of the method described in this report is parallel to the one- 
dimensional method developed by Bernick (ref. 3), programmed as the OPEX code 
(ref. 4), and later reprogrammed and reinterpreted as the OPEX-II code (ref. 5). 

MATHEMATICAL STATEMENT OF THE PROBLEM 

Assume a shield consisting of n layers. (For purposes of mathematical develop- 
ment, only the total number of layers need be considered. The n layers may be con- 
sidered to be divided into n1 layers in the first direction, n2 layers in the second di- 
rection, and so forth, with n = n + n + . . . .) x. 1 2 is the thickness of the ith layer. 

Let a vector Z be defined in n-dimensional victor space with quantities xl, x2, 
. . . , xn as components: 

x1 

x2 

z= - 

I* . 

xn. 

Let the total shield weight be denoted by W(Y). The function W(Z) will in general be 
nonlinear. 

The problem is then to minimize total shield weight subject to m dose constraints, 
say in certain directions. Mathematically, this can be expressed in the following way: 
Let 

with constraints 

W(Z) - minimum 

D; = D&Z) - Cl = 0 

(1) 

@a) 



D”z = D2(E) - C2 = 0 cm) 

. . . 

DO,=D,(E)-Cm=0 

and 

xi 2 0 

CW 

(3) 

where Dj(Z) is defined as the value of the dose rate at the .th J point (i. e. , in the .th J 
direction) and is, in general, some nonlinear function of TI, and Cj is the required dose 
rate at point j. (Again, the xi and hence Dj may be considered to be subdivided into 
the different directions with Dj strongly dependent on those xi in the jth direction and 
weakly dependent on, or completely independent of, the thicknesses in the other direc- 
tions. The present derivation first considers the general case of Dj dependent on all 

xim> 
Constraint (3) is necessary to ensure a solution with all xi 2 0, that is, a feasible 

solution. 

THE ALGORITHM 

The method of steepest descent as applied in this report is an iterative procedure to 
find a vector Xmin which is a solution to the problem stated in equations (l), (2), and 
(3). The procedure is as follows: 

(1) Choose an initial feasible vector X0, (i. e., one which satisfies constraints (2) 
and (3)). 

(2) Find a unit vector Ki, at point X0, which points in the direction of maximum al- 
lowable decrease in the function W(E). The direction of U is chosen subj ect to the con- 
straint that ii is tangent to the constraint surface defined by Dy( x) = 0 for all j (i. e. , 
the dose constraint is met). 

(3) Calculate a vector El 

fl = z. + x”ii 

where X0 is some interation parameter, a constant, say. 
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(4) Calculate Dy (Z,) for all j. 
not, in general, be equal to zero. 

Because of the nonlinear nature of D, Df(Z,) will 
A corrected point RI is then determined such that 

D&) = 0 

(5) set El -CEO, - repeat steps (2) to (5) until some convergence criterion on weight is 
satisfied. The final value of K thus computed should then be a close approximation of 

DERIVATION OF TT 

General Considerations 

Let vectors g, and aI, a2, . . . , Zm be defined by 

g= VW@ 

Zi2 = VD!@ 

. . 

. . 

. . 

z m = VD;(Ti) 

where 

a 
axl 

a 

ax2 
v= . 

. 

. 
a 

ax, 



and V is the conventional gradient operator as applied in n-dimensional space. The 
problem is then to find a vector Ii at some point f such that 

‘g’ . Ii -minimum (4) 

ii- ii= 1 (5) 

. 

‘m . Ei=O (6m) 

Expression (4) indicates that the component of ii along the direction of greatest increase 
of W is to be minimized (i. e., the component in the direction of greatest decrease of 
W is to be maximized). In the case of no dose constraints, for example, Ii and g 
would point in opposite directions or 

Expression (5) constrains Ci to be a unit vector. This is added for computational con- 
venience. Expressions (6) simply state that Ci must be perpendicular to VDP (i. e. , E 
must lie in the plane of, or in general only be tangent to, a hypersurface of constant 
dose, Dr = 0, for all j). 

Equations (4) to (6) can be solved by the method of Lagrange multipliers. Write the 
Lagrangian as 

y=g. E+al(Z1- ii)+cY2(82.c)+. . . -B(@*U’)-1) (7) 

where Q! 1’ “2’ - - - am, and /3 are undetermined multipliers. The stationary points 
of the objective function g . C are desired at a particular point Z. At this particular 
point, g is fixed and only the components of iI are variable; that is, g s Z = g . K(ui) 
only. Therefore, to solve for the unknown ui and multipliers CY~ and p, each partial 
derivative of 9, equation (‘I), with respect to ui is set equal to zero to determine sta- 
tionary points. That is, 

5 



a49 - o -- 
% 

2%, 

&2 
. . 

. . 

. . 

or simply 

Evaluating this term by term, where $ is a unit vector in the ith direct ion, 

n 

vccg * ii) = 
c 

iii -+. "1+&J-u +. . .+g 2 *u) 
i 

n n 

i=l 

=[gl(fl~)+g2fi2J-??)+. . . +ng 
n 

= 
c giGi = g 
i=l 

Similarly, 

and 



n 

v$i* i-i)= 
c 

ii. a (u 
l aui l 

‘U +u 
l 2 

.u2+. . .+u -un) n 

i=l 

n 

= 
c 

Gi $ (I$) = &2Ui = 2i 

i=l 
i i=l 

or finally 

v$z=o=g+ca +o!z +. . . -2pii 11 22 03) 

Derivation of ai 

Equation (8) along with constraints (5) and (6a) to (6m) provide a set of m + 2 equa- 
tions in m + 2 unknowns (ii, p, al, ‘Ye, , . . , .om). To solve this set of equations, 
take al . [eq. (8)] and obtain 

g - fl + ala: + cr2Zl . z +. . 2 * +amal m - zr - 2pa, - E=() 

Then take X2 . [eq. (8)] and obtain 

SF- x2 + cYlFL2 - Z1 + a2ag + . . * + cYma2 m * z - 2pz2 . a=() 

@a) 

(9b) 

. . . 

g-zm+Lul~m’~1+cY2~m’~2+. . . +amzm.zm’2pxm’ii=o @m) 

Because of boundary condition (6), terms like Zii . Z vanish. Hence, equations (9) com- 
pose a set of m equations in m unknowns, namely, 



In principle, equation (10) can be solved for any m. Consider the following cases: 
m = 1: 

Q! = 
-g- x1 

1 zi * B (11) 
1 1 

m= 2: 

Let 

Then 
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m = 3: 

Let 

Then 

(13b) 

(13c) 
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Derivation of Q and U 

To solve for p, rearrange equation (8): 

g+a1z1+a2~2+. . . amxrn 
u= 

w 
(14) 

Take Es of both sides. Using both equation (14) and E . ii = 1 results in 

,-.,-=l=(~ + alzl+ a2z2 +. . . + Qm-mn) (iz + alzl + a2z2 + . . . cYmZm) . (15) 
20 w 

One constraint (m = 1). - For m = 1, equation (15) reduces to 

From equation (11) 

so 

The sign of this has not yet been resolved. 
From equation (14) and the value of al from equation (11) we have for m = 1, then, 

10 



For this to be a real solution, it is necessary that 

Finally, the sign must be resolved. 
Recall the original problem was to find the minimum ii - g. Therefore, taking 

g - [eq. (16)] yields 

ii- 

(16) 

(17) 

(18) 

Or, with 

B=g.g- 
zi *-ii 1 1 

Equation (18) becomes 

Because it is necessary that B > 0 for a solution, the plus sign maximizes ii - g and 
the minus sign minimizes Ii - g. Therefore, the minus sign is the required solution for 
this problem. 

11 
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Hence, the final solution for the m = 1 case is 

(19) 

This is the one-dimensional result derived by Bernick (ref. 3). 
Two or three constraints (m = 2 or m = 3). - From equation (15), for m = 2, 

2- 2- 
= g - g+ 2culg - Xl + 202g - F12 + olal . IQ+ 2ol~Y~91 . X2 + cY2a2 . Z2 (20) 

This may be expanded by using the appropriate expressions for (Y, equation (12). From 

equation (14)) 

where “1 and “2 are obtained from equation (12) and 0 is obtained from equation (20). 
This is the general expression for the vector Ii for a two-constraint problem. 

In general, the dose in any direction is known and may be expressed approximately 
as a function of thicknesses in that direction only. This report presently generates the 
optimization algorithm for this special case only. That is, consider the dose at points 
in the first and second (and third) directions determined only by the thicknesses in that 
particular direction. It is stated previously in this report that the n thicknesses gen- 
erally might be regarded as being nl thicknesses in the first direction, n2 in the sec- 
ond, and n3 in the third and that nl + n2 + n3 = n. If the dose equations are 

D’1 = D(I(xi) i= 1, n 1 

D; = D;(xi) i = (nl + l), (nl + n2) 

Do = Do i = (nl + n2 + l), n 

12 



one obtains 

B - 1- 

ax2 
. 

. 

aD; 

axn 

0 

0 

0 

0 

0 

0 

I- 

aD; 

axn +I 1 

aD; 

axn +2 1 

aD; 

3X n,+n, 

a - 3- 

0 

0 

0 

0 

0 

0 

I% l+n2+ 1 

Xnl+n2+2 
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As a result of this dose model, all terms of the form Zi . Zj equal 0 for i # j. Al- 

though the dose terms in the different directions are decoupled, the weight derivatives 
are not. 

For the two-constraint, two-direction problem (m = 2), the values of (Y, equa- 
tion (12), reduce to 

and 

From equation (15) 

Finally, from equation (14) and the expressions for al, 02, and P just given, 

14 



(22) 

For the reasons given previously, the minus sign in the denominator is again selected. 
Similarly, for m = 3, from equation (13), 

D3 = (Zl . Hl)(Z2 . X2)(X3 . X3) 

CY 2= 
(-E - a2&i1 * Zl) (iT3 * Z3) = -g * ST2 

D3 7i * a 2 2 

From equation (15), 
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From equation (14), 

(23) 

Again the minus sign in the denominator is selected. 
By comparing equations (19), (22), and (23), one could extend the derivation of E to 

even higher dimensions (m > 3). This is, however, only of academic interest because 
one could probably not define a dose-thickness relation to fit the m-dimensional case. 

COMPLETION OF THE OPTIMIZATION ALGORITHM 

Let the vector ii, evaluated by equation (19), (22), or (23) at Zk, where k indicates 
the kth optimization Step, be denoted by iIk. After iik and ?$+l are determined from 

x k+l = zk + h (24) 

a dose rate calculation is made. If the quantity D”(Z 1 k+l) (see eq. (2)) is sufficiently dif- 
ferent from zero, a correction to Xk+l must be made. An increment &k+l with com- 
ponents dxl, . . . , dx, is sought such that 

where 

6D(s+l) = VD&+l) ’ =k+l 

Also a minimum ldxk+l 1 is desired. 
This problem is then to minimize dx . dx with the constraint 

(25) 

(26) 

16 



Again define a Lagrangian S by 

(27) 

where y is an undetermined multiplier. We wish to find stationary points of the objec- 
tive function dx ’ dx at zh+l. To solve for the unknown dxi and multiplier y, at the 
stationary points, again take derivatives of 2, equation (27), with respect to dxi and 
set each equal to zero. The result is 

= = 0 = 2dxl + yVD;(s++ * 
adxl 

da1 

. 

. 

= = 0 = 2dx, + YVD;(++~) . d-3 
ad% J 

where I& is a unit vector in the direction zi. Equations (28) may be written as 

- 
0 = 2d.z + ym);(xk+l) 

(28) 

(29) 

Equations (25) and (29) provide a set of n + 1 equations in n + 1 unknowns dxi and 

Y. To solve this, from equation (29), we have 

dx = -2 VD;(Zk+l) 
2 

Substituting this in equation (25) and using equation (26) give 

or 

Y= 
- 2D&+ 1) 

V 
2 o- 

Di lXk+ 1) 

17 



It follows, then, that 

The new corrected vector %+I which satisfies the ith dose constraint is given by 

x k+l 
=X 

k+l += 

The procedure is to be repeated for each of the j directions. 
The algorithm is terminated when the relative weight change from one iteration to 

the next is less than some prescribed E. That is, when 

CONCLUDING REMARKS 

The algorithm for optimizing a two- or three-dimensional shield has been developed 
by extending a one-dimensional algorithm. Equations have been derived which permit 
implementation of this algorithm in a computer program similar to existing one- 
dimensional optimization codes. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 17, 1971, 
112-27. 
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